您当前所在位置: Home 资讯 考研大纲

2020年考研数学大纲-1

2019-10-21 10:04:21 64 中国考研网

  二、一元函数微分学


  考试内容


  导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性 微分中值定理 洛必达(L’Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径


  考试要求


  1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.


  2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.


  3.了解高阶导数的概念,会求简单函数的高阶导数.


  4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.


  5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.


  6.掌握用洛必达法则求未定式极 限的方法.


  7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.

  考试要求


  1.理解原函数的概念,理解不定积分和定积分的概念.


  2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.


  3.会求有理函数、三角函数有理式和简单无理函数的积分.


  4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.


  5.了解反常积分的概念,会计算反常积分.


  6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.


声明:
(一)由于考试政策等各方面情况的不断调整与变化,本网站所提供的考试信息仅供参考,请以权威部门公布的正式信息为准。
(二)本网站在文章内容来源出处标注为其他平台的稿件均为转载稿,免费转载出于非商业性学习目的,版权归原作者所有。如您对内容、版权等问题存在异议请与本站联系,我们会及时进行处理解决。

热门院校推荐